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Abstract 

 
This paper is concerned with an adiabatic compression of a plasma sphere with a random 
small-scale magnetic field embedded in the plasma. The length of the field line between 
two intersections with the wall, determined from the random walk scaling, is large 
enough to make electron heat losses along the field lines negligible. Then, such a sphere 
may become an interesting target for Magnetized Target Fusion experiments. Key 
processes affecting the performance of such a target are identified and constraints on the 
parameters of the system are formulated.  
 
KEYWORDS: magnetized target fusion, magneto-inertial fusion, random magnetic field, 
plasma liner 
 
  

I. INTRODUCTION 
 

Magnetized Target Fusion (MTF) is a version of pulsed fusion systems that relies 
on the slow, quasi-adiabatic compression of a magnetized plasma by a heavy liner. The 
plasma configurations potentially suitable for the implosions include field-reversed 
configurations  (FRC), spheromaks, diffuse pinches, and several others (see, e. g., Ref. 1). 
The liner compresses the target in a shock-less fashion, with a velocity that is small 
compared to the sound speed in a target plasma (see Refs. [2-4], which contain also 
references to the earlier publications).  

The range of plasma densities suitable for MTF corresponds to the densities 
which are much higher than those in magnetic confinement systems. In particular, the 
MTF plasma is typically much more collisional (see Ref. [5] for the corresponding 
dimensionless parameters). Still, the magnetic field plays a critically important role in 
suppressing heat conduction from the hot, compressed plasma to a cold liner. The liners 
can be made of a metal, as is the case in the on-going experiments with a Shiva-Star 
facility [6, 7]. They can also be made of a high-Z, cold plasma [8] (the latter approach is 
a variation of the plasma-liner concept described in Refs. [9] and [10]). 

Creating a target with a well-defined magnetic configuration inside the liner is 
certainly possible, as was shown, e.g., in the Refs. [6, 7]. On the other hand, it might be 
beneficial for MTF if simpler targets, not requiring creation and sustainment of high-
quality magnetic field in the course of slow compression, could be used. In this brief note 
we consider one of such possible targets: a plasma sphere with embedded random 
magnetic field (Fig. 1). By “random” we mean here a strongly tangled field where the 
field lines change direction on the scale l that is small compared to the global scale of the 
problem (here the sphere radius, R).  This is quite different from a stochastization of the 
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field lines in the toroidal devices caused by overlapping of resonant islands (see Sec. 1,7 
in Ref. [11] and references therein), where the field line remains weakly perturbed and 
makes many toroidal transits before it gets displaced significantly in the radial direction. 
The field that we analyze here is more like the random field considered in astrophysics, in 
such objects as dense molecular clouds [12].   

The field that we consider is weak in the sense that the ratio β of the plasma 
pressure to magnetic pressure is greater than one. This is a beneficial regime for plasma 
adiabatic compression, as the compressional pdV work goes then mostly to the plasma 
energy, with only a small fraction going to the magnetic field energy. The magnetic field, 
on the other hand, is assumed to be strong enough, so that plasma particles are 
magnetized. Then, the electron heat conduction goes predominantly along the field lines; 
due to the random walk of the field lines, the field line length between the core and the 
liner surface is much larger than the plasma radius R, and one can expect that electron 
heat loss to the walls will be greatly reduced.  
 A parameter domain where the MTF approach can be used is quite broad. In order 
to get specific numerical estimates, we assume that the system operates in the range of 
parameters discussed in [2, 3]: the initial plasma density n0~ 1017-1019 cm -3, the final one 
nf~1020-1022 cm -3, and the final plasma temperature Tf=10 keV.   

The implosion can be conveniently characterized by the radial convergence C,   

  

! 

C " R
0
/Rf ,          (1) 

with R0 and Rf being the initial and final (at the rebound) plasma radii; the initial 
temperature is related to the final temperature by   

  

! 

T
0
/Tf =1/C2          (2) 

(see [2]).  In making specific numerical estimates, we use a class of implosions with 
C=10, Tf=10 keV, and the fusion gain Q=10. As was shown in Ref. [13], all other 
parameters of the implosions can then be expressed as functions of two “input” 
parameters, the energy WL deposited to the plasma by the liner, and the initial plasma 
radius R0. In particular, one has (see Eqs. (19), (20) and (23) in Ref. [13]): 

  

! 

nf cm"3( ) =1000n0 cm"3( ) # 5 $1022
WL(MJ )

R0 cm( )[ ]
3

,    (3) 

  

! 

v cm /s( ) " 8 #106
W

L
(MJ )

R0 cm( )[ ]
2

.       (4) 

 This paper represents a first attempt of a scoping study of a relatively unexplored 
object, and one should not expect from it a comprehensive, rigorous analysis. Its result is 
a set of constraints that have to be imposed on the system in order it to be considered as a 
candidate for future, more detailed assessments.  
 

II. COMPRESSION OF A TANGLED MAGNETIC FIELD 
 

To obtain first rough estimates of various effects occurring during the implosion 
process, we use the following strategy: We assume that the thermal insulation of the 
imploding plasma is good, so that the compression occurs in an adiabatic regime. This 
allows us to obtain time histories of various parameters of the plasma and the magnetic 
field, by using scalings for 3D adiabatic compression [2, 13]. We then find the heat losses 



 3 

from this plasma, as well as the rate of the magnetic field dissipation, and thereby 
identify the parameter domain where the losses are indeed insignificant.  

Initial spatial correlation length of the random magnetic field (Fig. 1) is assumed 
to be much smaller than the plasma radius, with the spatial distribution of the magnetic 
field being isotropic (no preferential direction for the scales significantly greater than the 
correlation length). As mentioned above, the magnetic field is weak (high-beta plasma) 
and does not affect the dynamics of the system, in particular, gives only minor 
contribution to the total pressure. For an homogeneous compression that the plasma 
experiences in our system, the distance between any two points scales as a radius R, i.e.,  
the length l scales as: 

  

! 

l

l
0

=
R

R
0

.         (5) 

This means, in particular, that the number N of the magnetic “loops” on the scale R, 
remains constant in the course of the implosion, 

 
  

! 

N "
R

l
=

R
0

l
0

= const .        (6)  

The width of any magnetic flux tube scales as R, i.e., the magnetic field strength 
scales as (R/R0)2, and the magnetic field energy density scales as (R/R0)4. The rate of the 
energy density increase (by compression) is   

! 

d /dt(B
2
/8" ) = #(B

2
/8" )4 ˙ R / R . On the 

other hand, the rate of the Joule dissipation for the fields having a length-scale l is 
  

! 

d /dt(B
2
/8" ) = #(B

2
/8" ) /$

M
, where τM is the magnetic diffusion time over the scale l. 

Roughly,  

  

! 

"
M

=
l
2

2D
M

; D
M

=
c
2

4#$
,       (7) 

with DM  being the magnetic diffusivity and σ being the electrical conductivity. CGS 
system of units is used throughout this paper in the “general” equations like Eq. (), and 
“mixed” units are used in “practical” numerical estimates. The magnetic energy equation 
that accounts for both compressional build-up and resistive dissipation then becomes: 

  

! 

d

dt

B
2

8"
= #

4 ˙ R 

R
#

1

$
M

% 

& 
' 

( 

) 
* 

B
2

8"
       (8) 

Note that the first term in the brackets is positive, since   

! 

˙ R < 0. 
As we do not want significant dissipation of the magnetic field during the 

implosion process, we have to impose the constraint that  
  

! 

"
M

> R /4 ˙ R .         (9) 
Specific dependence of the implosion velocity vs time is determined by the mode 

of the liner implosion. We will concentrate on the mode where the liner has a finite 
velocity at the time of its first contact with the target, and no further liner acceleration 
occurs. This is a mode that will be realized with the heavy plasma liner technique 
described in Refs. [8, 13], and in those versions of the metal liner implosions where the 
target is injected into the metal liner at the time when it has already reached significant 
velocity, similar to what is anticipated in the experiments [6, 7]. So, we assume that  

  

! 

˙ R " v
0
          (10) 

for the most part of the implosion, except for the very last moments near the liner 
rebound [13].  
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The length-scale of the magnetic field varies according to Eq. (5), and the 
magnetic diffusivity varies as T-3/2∝R-2.  Therefore, Eq (9) can be rewritten as:  

  

! 

2R
0
v
0

D
M 0

> N
2 R

R
0

" 

# 
$ 

% 

& 
' 

2

.        (11) 

One sees that the most severe problems with the magnetic field dissipation take place 
during the early stage of the implosion, when R is still not much less than R0. This is a 
result of two factors: i) the temperature is low early in the implosion, meaning a low 
electrical conductivity; ii) with a constant implosion velocity, the compression rate, 
  

! 

| ˙ R | / R, is initially small. If condition (11) is satisfied early in the implosion, then it is 
satisfied until the end. Using the numerical estimate of Dm0 from Ref. [14], and setting 
R=R0 in Eq. (12),  one finds the following numerical constraint:  

  

! 

N
2 < 5 "10#7R0(cm)v0(cm /s) T0(eV )[ ]

3 / 2.      (12) 
For our reference case described in conjunction with Eqs. (1)-(4), one can rewrite this 
inequality as: 

  

! 

N
2

< 4 "10
3W (MJ )

R
0
(cm)

        (13) 

The resulting plots are shown by blue lines in Fig. 2.  
 

III. ENERGY CONFINEMENT 
 

Assuming that condition (13) is satisfied, we turn now to the issues of the heat 
conduction from the hot plasma to a relatively cold liner. For the magnetic field lines 
experiencing random changes of direction with a step size l, the field line length L 
between the center of the device and the wall obeys a diffusive scaling,   

! 

L ~ R
2
/l ~ NR. 

We assume that the electron mean free path λ is much smaller than this length (see Sec. 
IV). In such a case, one can evaluate the electron heat conduction time to the walls as  

  

! 

"
e
~

L
2

2#
e

~ N
2 R

2

2#
e

,        (14) 

where χe is the electron thermal diffusivity. It scales as T5/2/n, so that, for the adiabatic 
heating (  

! 

T "1/R
2,   

! 

n"1/R
3),  the r.h.s. scales as R4. Therefore, in this case, the most 

severe constraints on the heat losses will appear at the last stage of the implosion, near 
the stagnation point.  

The dwell time τd near the stagnation is related to the fusion gain factor Q via the 
Lawson criterion, 

  

! 

" d (s) ~ 10
14Q /nf cm#3( ), and the numerical estimate of χe reads as [13] 

(for the Coulomb logarithm equal to 10): 

  

! 

"
e
(cm

2
/s) # 6.6 $1019 T eV( )[ ]

5 / 2

/n cm
%3( ) .     (15) 

Then the condition τe>> τd for the final state of compression becomes: 

  

! 

N 2 >>
1.3"10

44Q

nf cm#3( )[ ]
2

Rf cm( )[ ]
2

.      (16) 

Using Eqs. (3), (4), one finds for our reference case (C=10, Q=10): 
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! 

N
2 >
50 R0(cm)[ ]

4

W
L
(MJ )[ ]

2
.        (17) 

This constraint is shown in Fig. 2 by red lines. The domain where both conditions (13) 
and (17) are satisfied lies between the blue and the red curves. On sees that, to have 
significant operational margin, it is advisable to use larger energies and smaller target 
radii.  

Consider now particle magnetization. As we will see, in the regimes of interest, 
the ion gyro-radius ρi is smaller than the correlation length l (this meaning also that the 
electron gyroradius ρe is automatically much smaller than l). As l varies as 1/C, and the 
plasma temperature and the magnetic field vary as C2 , one sees that the ratio ρi/l does not 
depend on the convergence. So, if the condition 

ρi/l<1          (18) 
is satisfied in the initial state it will then be satisfied during the whole compression 
process.  
 The initial magnetic field strength is limited by our assumption that the magnetic 
pressure is smaller than the plasma pressure. In other words, we assume that  

  

! 

"
0
#
2n

0
T
0

(B
0

2
/8$ )

>1.        (19) 

As was mentioned before, this makes the compression more efficient in that the pdV 
work goes mainly to the plasma heating, not to the pumping-up the magnetic field. For 
the gyro-radius, we will use the expression 

  

! 

"
i
= 2T /m

i
, with mi equal to the 2.5 proton 

mass. For our reference case described in the paragraphs containing Eqs. (1) - (4), the 
condition ρi/l<1 can be formulated as 

  

! 

N
2

<
2

"
0

# pi0R0

c

$ 

% 
& 

' 

( 
) 

2

.        (20) 

Assuming that β0=1 and using other parameters and scalings for our reference case, one 
can show that this constraint can be converted to 

  

! 

N
2

<10
5W

L
(MJ )

R0(cm)
.        (21)  

This condition is less restrictive than Eq. (13) and is therefore subsumed by Eq. (13). In 
other words, in the regimes of interest for us the ions are magnetized.  Their parallel heat 
transport is negligible compared to the electron parallel heat transport and can be 
neglected. With regard to the cross-field transport, for the condition ρi/l<1, it will be 
limited by the Bohm diffusion,  

  

! 

D
Bohm

=
1

16

cT

eB
.        (22) 

The role of the Bohm diffusion was assessed, in particular, in Ref. [13] and was found 
negligible (due to the high plasma density and small confinement times needed to reach 
significant Q values).  
 Consider now the dynamics of the alpha particles. They appear in the system near 
the stagnation of the liner, so we should consider their interaction with the target at its 
final state. Their gyroradius is approximately 

! 

140  times greater than the gyroradius of 
10 keV ions with the mass of 2.5mp. Accordingly, the condition that the gyroradius of 
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alphas is smaller than l in the final state is 140 times more restrictive than Eq. (21) and 
reads as  

  

! 

N
2

< 700
W

L
(MJ )

R
0
(cm)

.        (23) 

The corresponding lines are shown as dashed green lines in Fig. 2. [Note that we prefer to 
present the results in terms of N2 (not N), as otherwise it would be harder to see the 
differences in the log-log- plots of Fig. 2.] 

If condition (23) is satisfied, then the lifetime of the alpha particles will be 
determined by their transport along the tangled field lines; it can then be evaluated as 

  

! 

Rf

2
/l f v" = NR

0
/Cv" , where vα is the alpha-particle velocity (~1.3×109

 cm/s). One can 
compare it with the slowing-down time τslow, which can be presented as (see [15] and Eq. 
(29) in Ref. [13]): 

  

! 

" slow(s) # 3$10
13
/n f (cm%3

) ~ 6 $10
%10 R0(cm)[ ]

3
/WL(MJ ) . The 

condition that the latter is shorter than the former reads as: 

  

! 

N
2 >

75 R0(cm)[ ]
4

W
L
(MJ )[ ]

2
        (24) 

This condition is only slightly more restrictive than condition (17), so we will not 
consider it separately.  

In the case where Eq. (23) is violated, evaluating the alpha life-time becomes 
more complex and we will not dwell on it in this first analysis. We just note that the 
alphas life time may still remain longer than the slowing down time. If, however, the 
latter condition breaks down, the system will become a batch-burn system, where alpha 
heating is negligible [2]. Still, with Q~10 even this mode may remain acceptable.  

 
IV. PLASMA COLLISIONALITY 

 
Consider an issue of the plasma collisionality. We will characterize it by the ratio 

of the “connection length”   

! 

R
2
/l " NR  to the Coulomb mean free path λ. One can see that 

this dimensionless parameter decreases in the course of the compression, mostly due to 
the increase of the plasma temperature. So, in order to guarantee high collisionality 
during the course of compression, one needs to make sure that it is large in the final state. 
[An assumption of strong collisionality was used in the estimates of the electron cooling 
time above.] The condition 

  

! 

NRf /" f >1can be presented as:  

  

! 

N
2 > 4 "10#3

R
0
(cm

#3
)[ ]
2

W
L
(MJ )[ ]

2
       (25) 

For all reasonable values of R0 it is much weaker than condition (17) and can therefore be 
considered as satisfied.  

One more constraint comes is related to the possible onset of anomalous 
resistivity. The current density j required to make magnetic field varying at a small scale l 
can be evaluated as  

  

! 

j ~
cB

4"l
.         (26) 

The relative velocity u of the electrons and ions corresponding to this current density is  
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! 

u =
j

en
~

cB

4"enl
.        (27) 

In order to avoid the appearance of the anomalous resistivity, one has to impose a 
constraint (see, e.g., Sec. VII in Ref. [16] and references therein u<vTi, where 

  

! 

v
Ti

= 2T /m
i
 is the ion thermal velocity. One can see that this condition is most difficult 

to satisfy early in the implosion, at R=R0. The constraint can be formulated in terms of 
the parameter N2  and reads as 

  

! 

N
2

<
"
0

2

# pi0R0

c

$ 

% 
& 

' 

( 
) 

2

.        (28) 

For  β0=1 It is less restrictive than condition (13) and is therefore subsumed by this 
condition.  
  

V. DISCUSSION 
 
The zero-dimensional scoping study presented in previous sections has shown that 

the target with a random magnetic field can be of some interest for the magnetized target 
fusion. It is attractive for MTF in that it eliminates any concerns related to the possible 
development of configurational instabilities which may affect any “regular” confinement 
configuration.  On a macroscopic level, the compression of a sphere with small-scale 
random field is just a compression of a sphere of gas with a low thermal conductivity. In 
principle, the sphericity is not a necessary feature of this scheme: one can think of 
compressing prolate (or oblate) volumes of gas. This latter circumstance opens up a 
possibility of using shaped, magnetically driven metal liners, as in the experiments [6, 7].  

Creating of an initial plasma with a small-scale, random, β~1 magnetic field 
immersed into it may be not a simple task.  The author is not aware of any published 
papers where formation and characterization of such an object would be documented. An 
intuitively appealing way for creating such a target would be the use of numerous plasma 
guns generating small-scale, magnetized plasma bunches and injection of such bunches 
into a limited volume. This could be a version of guns envisaged in the plasma liner 
approach [9, 10]. Here we would need bunches with the energy per ion of only a few 
hundred electron-volt.  

One can also try to use effects of self-generation that are present in the plasma 
with initially absent magnetic field but having significant temperature and density 
gradients. However, in this case, we will have no much control over the scale of the 
generated field and its magnitude.  

In the MTF concept the target is supposed to be compressed by a heavy liner 
whose velocity is small compared to the plasma sound speed. In particular, during the 
first contact between the liner and the target, the liner velocity is much smaller than the 
sound velocity in the target. This means that the target with random fields has to be 
created inside an already moving liner. This imposes additional constraints on the access 
for the plasma bunches or plasma streams. One possibility is the use of the glide cones 
[13], similar to those used in or in magnetically-driven implosion of spherical liners [17] 
or in Fast Ignition research [18]. At any rate, creating a target inside a moving liner is a 
non-trivial task. 
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Among the physics problems not discussed in this paper is the effect of a plasma 
cooling near the target edge and formation of the colder transition zone between the 
target and the (relatively) cold liner. This problem has drawn much attention in the 
context of the targets with a regular magnetic field (see, e.g., Ref [5] and references 
therein): as the plasma beta is higher than one, a plasma pressure balance means that the 
colder layers near the walls must have higher density, i.e., a redistribution of the plasma 
over the target volume occurs in the course of the plasma compressional heating. The 
magnetic field is advected to this colder layer and compressed there, thereby slowing 
down this “cooling flow.” The advection and compression of the random magnetic field 
may occur differently and may lead to a rapid field dissipation in the colder layer, unless 
the condition (13) is held by a large margin. We leave the analysis of this issue for future 
work.  
 

ACKNOWLEDGMENT 
 
This work was performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 



 9 

REFERENCES 
 

1. D.D. RYUTOV, R.E. SIEMON. “Magnetized Plasma Configurations for Fast Liner Implosions: 
a Variety of Possibilities.” Comments on Modern Phys, 2, # 5, p. 185, December 2001.  

 
2. R.P. DRAKE, J. HAMMER, C. HARTMAN, J. PERKINS, D.D. RYUTOV. ”Submegajoule 

liner implosion of a closed field line configuration”. Fusion Technology, 30, 310 (1996). 
 

3. R.E. SIEMON, I.R. LINDEMUTH, K.F. SCHOENBERG. “Why Magnetized Target Fusion 
Offers a Low-Cost Development Path for Fusion Energy.” Comments on Plasma Physics and 
Controlled Fusion, 18, 363 (1999).  

 
4. R.C. KIRKPATRICK, I.R. LINDEMUTH, M.S. WARD. “Magnetized Target Fusion: an 

Overview.” Fusion technol., 27, 201 (1995).  
 

5. D.D. RYUTOV, D. BARNES, B. BAUER, J.H. HAMMER, C.W. HARTMAN, R.C. 
KIRKPATRICK, I.R. LINDEMUTH, V. MAKHIN, P. B. PARKS,  D.B. REISMAN, P.T. 
SHEEHEY, R.E. SIEMON. “Particle and Heat Transport in a Dense Wall-Confined MTF 
Plasma (Theory and Simulations)”. Nuclear Fusion, 43, 955 (2003). 

 
6. J.H. DEGNAN, D.J. AMDAHL, A. BROWN, T. CAVAZOS, S.K. COFFEY, M.T. 

DOMONKOS, M.H. FRESE, S.D. FRESE, D.G. GALE, T.C. GRABOWSKI, T.P. 
INTRATOR, R.C. KIRKPATRICK, G.F. KIUTTU, F.M. LEHR, J.D. LETTERIO, J.V. 
PARKER, R.E. PETERKIN JR, N.F. RODERICK, E.L. RUDEN, R.E. SIEMON, W. 
SOMMARS, W. TUCKER, P.J. TURCHI, G.A. WURDEN. “Experimental and computational 
progress on liner implosions for compression of FRCs.” IEEE Transactions on Plasma Science, 
36, 80 (2008).  

 
7. G.A. WURDEN, T.P. INTRATOR, P.E. SIECK, L. DORF, S.C. HSU, R.M. RENNEKE, W.J. 

WAGANAAR, ZHEHUI WANG, J.H. DEGNAN, E.L. RUDEN, M. DOMONKOS, P. 
ADAMSON, C. GRABOWSKI, D.G. GALE, M. KOSTORA, W. SOMMARS, M.H. FRESE, 
S.D. FRESE, J.F. CAMACHO, S.K. COFFEY, N.F. RODERICK, P. PARKS, R.E. SIEMON, 
T. AWE, A. G. LYNN.  FRCHX Magnetized Target Fusion HEDLP Experiments. Paper IC/P4-
13, Proc. 2008 Fusion Energy Conference, IAEA, Vienna, 2008, (http://www-
pub.iaea.org/MTCD/Meetings/fec2008pp.asp) 

 
8. D.D. RYUTOV, Y.C.F. THIO. "Plasma liner with an intermediate heavy shell and thermal 

pressure drive", Fusion Sci. Technol., 49, 39-55, (2006). 
 

9. Y.C.F. THIO, C.E. KNAPP, R.C. KIRKPATRICK, R.E. SIEMON, P.J. TURCHI. “A Physics 
Exploratory Experiment on Plasma Liner Formation,” J. Fusion Energy, 20, 1 (2001).  

 
10. Y.C.F. THIO. “Supersonic Plasma Jet Driven MIF Fundamentals.” Paper presented at 

the LANL Plasma Jets Workshop, January 24-25, 2008. http://wsx.lanl.gov/Plasma-Jet-
Workshop-08/workshop-talks.html 

 
11. R. B. WHITE. “The Theory of Toroidally Confined Plasmas.”  Imperial College Press, London, 

2001.  
 



 10 

12. D.D. RYUTOV, J.O. KANE, A. MIZUTA, M.W. POUND, B.A. REMINGTON. "Two models 
of magnetic support for photoevaporated molecular clouds", Astrophys. Space Sci., 298, 
183-190, (2005). 

 
13. D.D. RYUTOV, P.B. PARKS. “Reaching High-Yield Fusion with a Slow Plasma Liner 

Compressing a Magnetized Target,” Fusion Science and Technology, 54, 978, November  2008, 
LLNL-JRNL-402455. 

 
14. S.I. BRAGINSKI. In: Reviews of Plasma Physics, edited by M.A. Leontovich (Consultants 

Bureau, New York), v.1, p. 205 (1965). 
 

15. D.L.BOOK. “NRL Plasma Formulary.” Naval Research Laboratory (1987). 
 

16. D.D. RYUTOV, M.S. DERZON, M.K. MATZEN. “The physics of fast Z pinches.” Rev. Mod. 
Phys., 72, 167 (2000). 

 
17. J.H. DEGNAN, F.M. LEHR FM, J.D. BEASON, ET AL. “Electromagnetic Implosion of 

Spherical Liner.” Physical Review Letters, 74, 98 (1995). 
 

18. M. H. KEY. “Status of and Prospects for the Fast Ignition Inertial Fusion Concept.” Phys. 
Plasmas, 14, 055502 (2007). 

 



 11 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Plasma sphere of a radius R with a random magnetic fieldwith a correlation length 
l<<R. Shown in blue is one of the magnetic field lines. Self-intersections are a result of 
the projection of a 3-dimentional object onto a plane. Thin pink shell represents a liner. 

l 

R 
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Fig. 2. The parameter space for implosions of the spherical target with random magnetic 
field: blue lines correspond to Eq. (13), red lines, to Eq. (17), and green lines, to Eq. (23). 
The numbers by the curves correspond to the liner energy, fusion yield Q is 10, radial 
convergence C is 10.  
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